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Preface

In multivariate statistical analysis, elliptical distributions have recently provided an
alternative to the normal model. Most of the work, however, is spread out in journals
throughout the world and is not easily accessible to the investigators. Fang, Kotz,
and Ng presented a systematic study of multivariate elliptical distributions; however,
they did not discuss the matrix variate case. Fang and Zhang have summarized
the results of generalized multivariate analysis which include vector as well as
the matrix variate distributions. On the other hand, Fang and Anderson collected
research papers on matrix variate elliptical distributions, many of them published
for the first time in English. They published very rich material on the topic, but
the results are given in paper form which does not provide a unified treatment of
the theory. Therefore, it seemed appropriate to collect the most important results
on the theory of matrix variate elliptically contoured distributions available in the
literature and organize them in a unified manner that can serve as an introduction to
the subject.

The book will be useful for researchers, teachers, and graduate students in
statistics and related fields whose interests involve multivariate statistical analysis
and its application into portfolio theory. Parts of this book were presented by Arjun
K. Gupta as a one semester course at Bowling Green State University. Knowledge of
matrix algebra and statistics at the level of Anderson is assumed. However, Chap. 1
summarizes some results of matrix algebra. This chapter also contains a brief review
of the literature and a list of mathematical symbols used in the book.

Chapter 2 gives the basic properties of the matrix variate elliptically contoured
distributions, such as the probability density function and expected values. It also
presents one of the most important tools of the theory of elliptical distributions, the
stochastic representation.

The probability density function and expected values are investigated in detail in
Chap. 3.

Chapter 4 focuses on elliptically contoured distributions that can be represented
as mixtures of normal distributions.

The distributions of functions of random matrices with elliptically contoured
distributions are discussed in Chap. 5. Special attention is given to quadratic forms.
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viii Preface

Characterization results are given in Chap. 6.

The next three chapters are devoted to statistical inference. Chapter 7 focuses on
estimation results, whereas Chap. 8 is concerned with hypothesis testing problems.
Inference for linear models is studied in Chap. 9.

Chapter 10 deals with the application of the elliptically contoured distributions
for modeling financial data. We present distributional properties of the estimated
main characteristics of optimal portfolios, like variance and expected return assum-
ing that the asset returns are elliptically contoured distributed. The joint distributions
of the estimated parameters of the efficient frontier are derived as well as we
provide exact inference procedures for the corresponding population values. We also
study the distributional properties of the estimated weights of the global minimum
variance portfolio in detail.

In Chap. 11, we consider a further extension of matrix variate elliptically
contoured distributions that allows us to model the asymmetry in data. Here, first
the multivariate skew normal distribution is presented and its matrix generalization
is discussed. We also study the main properties of this distribution, like moments, the
density function, and the moment-generating function. Next, the skew ¢-distribution
is introduced as well as the general class of matrix variate skew elliptically con-
toured distributions. Moreover, we present the distributional properties of quadratic
forms in skew elliptical distributions and discuss the inference procedures. An appli-
cation into portfolio theory is discussed as well. Finally, an up-to-date bibliography
has been provided, along with author and subject indexes. The materials in the first
nine chapters are from the book Elliptically Contoured Models in Statistics by the
first two authors. The material in Chaps. 10 and 11 is taken from the papers of the
authors. Permission of their publishers Kluwer Academic Publishers (http://www.
wkap.com), Japan Statistical Society (http://www.jss.gr.jp), Springer (http://www.
springer.com), and Taylor and Francis (http://www.tandfonline.com/) is gratefully
acknowledged.

We would like to thank the Department of Mathematics and Statistics, Bowling
Green State University, and the Department of Mathematics, Humboldt University
of Berlin, for supporting our endeavor and for providing the necessary facilities to
accomplish the task. The first author is thankful to the Biostatistics Department,
University of Michigan, for providing him the opportunity to organize the material
in its final form. Thanks are also due to Professors D. K. Nagar, M. Siotani,
J. Tang, and N. Nguyen for many helpful discussions. He would also like to
acknowledge his wife, Meera, and his children, Alka, Mita, and Nisha, for their
support throughout the writing of the book. The second author is thankful to his
mother Edit for her support in the early stages of the work on this book. The
third author acknowledges the support of the Department of Statistics, European
University Viadrina and the German Research Foundation (DFG) via the Research
Unit 1735 “Structural Inference in Statistics: Adaptation and Efficiency”. Thanks
are also due to Professors W. Schmid and Y. Yelejko. He is also greatly thankful
to his wife Olha and to his children Bohdan and Anna-Yaroslava for providing
considerable help during the preparation of the book.
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Acronyms

We denote matrices by capital bold letters, vectors by small bold letters and scalars
by small letters. We use the same notation for a random variable and its values. Also
the following notations will be used in the sequel.

R”
PB(RP)
Sp

R+

R§

XA (x)

x(x=1)
A € RP*"
(l,‘j

A/

rk(A)
A>0
A>0

Al

tr(A)
etr(A)
Al
Afl
A
A1/2

the p-dimensional real space

the Borel sets in R”

the unit sphere in IR?

the set of positive real numbers

the set of nonnegative real numbers

the indicator function of A, that is y4(x) = 1if x € A and y4(x) =0
ifxgZA

the same as |, ..)(x) (tis a real number)

A is a p x n real matrix

the (i, j)th element of matrix A

transpose of A

rank of A

the square matrix A is positive definite (see also Sect. 1.2)

the square matrix A is positive semidefinite (see also Sect. 1.2)
determinant of the square matrix A

trace of the square matrix A

exp(tr(A)) if A is a square matrix

norm of A defined by ||A|| = \/tr(A’A)

inverse of A

generalized inverse of A, that is AA~A = A (see also Sect. 1.2)
let the spectral decomposition of A > 0 be GDG’, and define
A2 = GD'/2G/ (see also Sect. 1.2)

the set of p X p dimensional orthogonal matrices

the p x p dimensional identity matrix

the p-dimensional vector whose elements are 1’s; that is, e, =
(1,1,...,1) real matrix

Kronecker product of the matrices A and B (see also Sect. 1.2)
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A>B A — B is positive definite

A>B A — B is positive semidefinite
aj
a
vec(A) the vector | | | where a; denotes the ith column of p X n matrix
an
Ai=1,2,....n
J(X — f(X)) the Jacobian of the matrix transformation f
X~9 the random matrix X is distributed according to the distribution &
X~Y the random matrices X and Y are identically distributed
Cov(X) covarinace matrix of the random matrix X; that is Cov(X)
Cov(vec(X"))
ox(T) the characteristic function of the random matrix X at T; that is

E(etr(iT'X)), X, T € RP*"

For a review of Jacobians, see Press (1972) and Siotani, Hayakawa and Fujikoshi
(1985). We also use the following notations for some well known probability

distributions.

UNIVARIATE DISTRIBUTIONS:

N(u,0?) normal distribution; its probability density function is

)= ——ep{ -

where t € R, 6 € R",andx € R
B(a,b) beta distribution; its probability density function is

flx) = (1 —x)
B(a,b)
where a > 0,b >0, B(a,b) = %,and0<x< 1
t, Student’s ¢-distribution; its probability density function is

f(@=%(l+i)_w7

where n >0, and x € R
chi-square distribution; its probability density function is



Acronyms xvil

1 n_q X
X)= 3 x2 ' ex {—f},
fO) =57 ® P{5
where n > 0, and x > 0
Xn chi distribution; its probability density function is

where n >0, and x > 0

Fam F distribution; its probability density function is
NCONTICIIN
flx)= T (VT (™) (*) )
(3)T(5) \m (1+2x) 2
where n,m=1,2,...,,and x > 0

Upmu U distribution, which is the same as the distribution of Hle v;; where v;’s
are independent and

n+l—i m
ViNB(2’2>

For the U distribution, see Anderson (2003), pp. 307-314.

MULTIVARIATE DISTRIBUTIONS:

N,(u,X) multivariate normal distribution; its characteristic function is

Ox(t) = exp {it’u + ;t’Zt} ,

where x,t,t € RP, X € RP*P,and X > 0
D(my,...,mp;mp,1)  Dirichlet distribution; its probability density function is

r(xem My
f(x) (m)H (“ix") ’

Hf:ll I (m;) i=1
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where X = (x1,x2,...,%p) € RP,0< ¥ x;<1l,andm; >0,i=1,2,...,p
SMT,(o) multivariate skew z-distribution; its probability density function is

o'y

H(y) =2fr,(¥)Fr,, < 1 \/V+P> :

(v+yzly)z

where f7,(-) and Fr,(-) denote the probability density function and the

cumulative distribution function of central 7-distribution with k degrees of

freedom, respectively; y € R, v >0, o € R, X € IRP*P, and X > 0.
SMC(or) multivariate skew Cauchy distribution; its probability density function is

where Fr,(-) denotes the cumulative distribution function of central 7-
distribution with k degrees of freedom; y € R”, @ € RP, X € RP*?, and
2>0.

CSNp4(1,Z,D,v,A) closed skew normal distribution; its probability density
function is

8pa(y) = Cop(y; 11, Z)Dg[D(y — p); v, Al
with
' =@,0;v,A+DZD| )

where ¢;(x;1,%) and @;(x; 11,X) denote the probability density function
and the cumulative distribution function of the /-dimensional normal
distribution with mean vector u and covariance matrix X, respectively;
YERP, p,g>1,ueRP,veRI,DeRI*P, X cRP*P, X >0,A € RI™,
and A > 0.

MATRIX VARIATE DISTRIBUTIONS:

Npn(M,X® @) matrix variate normal distribution; its characteristic function is
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1
ox(T) = etr {iT’M + ZT’ETtp} ,

where M, X, T € RP*", X € RP*P, X >0, ® € R"",and ® >0
W,(Z,n) Wishart distribution; its probability density function is

X5 err {~1z71X
f(X): ‘ | np { }7
272|151, (%)

where X € RP*P X >0, X € RP*P, ¥ > 0, p, n are integers, n > p, and

1) L2 | —
) F(t—l 1)
i=1 2

Bf,(a7 b)  matrix variate beta distribution of type I; its probability density function
is

b p+1

x| 1, - X

f(X) - ﬁp(a7b) )

where a > 51, b > 251, B, (a,b) = BUED X € RPP, and 0 < X <1,

B;,’ (a,b) matrix variate beta distribution of type II; its probability density function
is

p+1

|X|a——‘1 +X| (a+b)
Bp(a b) ’

fX) =

where a > 221 b > 221 X € RP*P, and X > 0
Tpn(m,M, X, @) matrix variate T distribution; its probability density function is

_np —
T 21—~ <n+m;p 1)

1 ,
n(5) 121 |0

ntm+p—1

fX)= |+ (X-M)Z T (X-M) |

where m >0, M, X, T € RP*", X € RP*P, £ >0, ® € R, and ® >0
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E,(M,Z®®,y) matrix variate elliptically contoured distribution; its charac-
teristic function

ox(T) = etr((iT'M)y(tr(T'ZT®)),

where T: pxn, M:pxn, X: pxp, ®:nxn, X>0, ® >0, and
y:[0,00) = R

For further discussion of B,(a,b), Bl (a,b), see Olkin and Rubin (1964) and
Javier and Gupta (1985b), and for results on 7}, ,(m,M, X, @), see Dickey (1967).
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